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Goals

Goals

= Assist in understanding Guinea Worm (GW) disease spread
in Chad and evaluate the effectiveness of potential
interventions

* Approach

= Agent-based simulation model that tracks the disease spread
of GW in dogs

Model complex interactions (e.g., humans, dogs, hosts, and
water) over multiple years

Flexible model that can be fine tuned as more data become
available



Example Life Cycle of GW with

Paratenic Host

Larvae are released when
copepods are digested. Larvae

and reproduce in subcutaneous lissues.

Fertilized female worm migrales
to surface of skin, causes
a blister, and discharges larvae.

o L1 larvae released into waler
from the emerging female worm.

Eberhard et al, “The Peculiar Epidemiology of Dracunculiasis in Chad”,
Am ] Trop Med (2014)
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y Assumptions

Infections occur through
water or paratenic host
(e.qg., fish, tadpole, frog,
lizard)

Lifetime of host and L3
larvae in host

Timing of rainy season,
link with consumption
patterns of water or
food, and corresponding
infection rate



Today’s Focus:

Disease Modeling
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Seasonality &
Environmental Factors
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Model Fit (Examples)

No Seasonality (WMSE = 1069.88)

— -— - Empinical

— - — - Empirical

Combined (WMSE = 444.68)

Conclusion: Seasonality of infections is driven by more than just the life
cycle. Infectivity is high (or low) in particular time periods. 8




Hypothetical Environmental Factors
affecting Seasonality of Infections

Weather Factors
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Calibrated Select Environmental Factors
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Calibrated Environmental Factor

Weather Factors
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Calibrated Select Environmental Factors
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rate is
decreasing
(even with
worms being
exuded), e.qg.,
due to changes
in behavior or

Qvater or hosts /
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68% of the worm burden between April-August. Also when the “good” environmental factors are most similar.



Estimates of reproductive rate vary with time

Estimated RO per Month for Population=800
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Number of dogs exuding worms
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¢ Greater surveillance in-
country

& Gap between reported
intervention and “effective” . . | VW Y Y A
intervention N SR AT e ST
= E.g., 40% less tethering or

30% less effective tethering
and ABATE

@ Impact from earlier peak in
rainfall in 20177
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Predicting Future Years

“It's tough to make predictions, especially about the
future”. (Yogi Berra)

15



Intervention What-If Analysism

ABATE Tether | Other

rm Fu of Dog
T T

¢ BASELINE

= Infections
continue

RN

17%

Initialization Period
2014-2017

16



Fo
w

BASELINE

= Infections
continue

INCREASE
interventions
significantly
= Infections
decrease

Tether | Other

RN

I EEEEE

N : L £ L : '
2015 2016 2017 2018 2019 2020 2021 2022 2023

Time

Initialization Period
2014-2017

17



T
L

P
N

Interventlon W

Tether | Other

BASELINE

Infections
continue

INCREASE

interventions

significantly
Infections
decrease

DECREASE

interventions

significantly
Infections
explode

k.

1at If Analy3|s

Rk AriSe

Long Term Fnr!mhﬂﬂ of Dng Irl'fac‘ll.m

RN

EEERE

L L
2017 2018 2019 =020 2021 2022 2023
Time

Long Term Forecasting of Dog Infections
T T T T

“« M ow & wm B SN m
= 8 8 8 & & 8 8 8

Initialization Period 18
2014-2017



What might be needed for eradication
within 10 years?

When comparing various levels of ABATE & Tethering coverage, we can identify the
few combinations that are likely to eradicate within 10 years. 99% coverage is
understandably impractical.

Likelihood of Eradication per Intervention Scenario
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Likelithood of eradication within 10 years

When comparing various levels of ABATE & Tethering coverage, we can identify the
few combinations that are likely to eradicate within 10 years. 99% coverage is

understandably impractical.

Likelihood of Eradication per Intervention Scenario
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When ABATE is at
its highest level, all
6 scenarios reach
eradication.

When Tethering is
at its highest level,
only 4 out of 6
scenarios reach
eradication.
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Likelithood of eradication within 10 years

When comparing various levels of ABATE & Tethering coverage, we can identify the
few combinations that are likely to eradicate within 10 years. 99% coverage is
understandably impractical.

Likelihood of Eradication per Intervention Scenario
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Cost-benefit analysis of interventions

By incorporating the costs of each intervention, we can do cost-benefit analysis.
We have assumed tethering costs $100 per dog, and the cost of ABATE is piecewise
linear along the following graph:

104 Monthly Costof ABATE Intervention Coverage
T T T T T T T T

3

$1000 per 10 % increase
— $5000 per 10 % increase

25

$150,000 for 70% coverage

$50,000 for 50% covérage
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Cost-benefit analysis of interventions

When comparing the practical combinations, we can observe big picture patterns
about the strengths of increasing ABATE vs. tethering coverage.
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Cost-benefit analysis of interventions

When comparing the practical combinations, we can observe big picture patterns
about the strengths of increasing ABATE vs. tethering coverage.
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Current Conclusions

A

¢ Timing of infectivity (and worm burden) is
important to understanding causes and effective

interventions
E.g., Shallow pools or tadpoles or fish entrails Weather Factors
E.g., Providing dogs water to drink, |
burying, tetheri ibl tivel T N
urying, tethering (possibly proactively) !l W\
i 2 = == « Temperature
06 :’ : \\‘\\\\\\ ’ii\\"“‘ i
0.4 ’e‘:" \\\\\\ |/ \\ = = «Rainfall(acc)
. . v 3] Calibrated
¢ Eradication may take years .
’ o o
Early, full-level interventions are ultimately N T T T, . I
Cheaper | 2e 1| o | 1% | 13% [ 16% | 15% | 12% [fa w 6 |40 \ :w

% Continue current interventions while trying others
“Contain cases” and “Clean water”

Proactive tethering and providing dogs water to drink could
also keep them away from shallow pools, especially during
high infectivity periods
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